Silk Fibroin Degradation Related to Rheological and Mechanical Properties.
نویسندگان
چکیده
Regenerated silk fibroin has been proposed as a material substrate for biomedical, optical, and electronic applications. Preparation of the silk fibroin solution requires extraction (degumming) to remove contaminants, but results in the degradation of the fibroin protein. Here, a mechanism of fibroin degradation is proposed and the molecular weight and polydispersity is characterized as a function of extraction time. Rheological analysis reveals significant changes in the viscosity of samples while mechanical characterization of cast and drawn films shows increased moduli, extensibility, and strength upon drawing. Fifteen minutes extraction time results in degraded fibroin that generates the strongest films. Structural analysis by wide angle X-ray scattering (WAXS) and Fourier transform infrared spectroscopy (FTIR) indicates molecular alignment in the drawn films and shows that the drawing process converts amorphous films into the crystalline, β-sheet, secondary structure. Most interesting, by using selected extraction times, films with near-native crystallinity, alignment, and molecular weight can be achieved; yet maximal mechanical properties for the films from regenerated silk fibroin solutions are found with solutions subjected to some degree of degradation. These results suggest that the regenerated solutions and the film casting and drawing processes introduce more complexity than native spinning processes.
منابع مشابه
In vitro behavior of silk fibroin-coated calcium magnesium silicate scaffolds
Bioceramic scaffolds such as silicate bioceramics have been widely used for bone tissue engineering. However, their high degradation rate, low mechanical strength and surface instability are main challenges compromising their bioactivity and cytocompatibility which further negatively affect the cell growth and attachment. In this study, we have investigated the effects of silk fibroin coating o...
متن کاملDirect-Write Assembly of Microperiodic Silk Fibroin Scaffolds for Tissue Engineering Applications
Three–dimensional, microperiodic scaffolds of regenerated silk fibroin have been fabricated for tissue engineering by direct ink writing. The ink, which consisted of silk fibroin solution from the Bombyx mori silkworm, was deposited in a layer-by-layer fashion through a fine nozzle to produce a 3D array of silk fibers of diameter 5 mm. The extruded fibers crystallized when deposited into a meth...
متن کاملMacro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications.
This study describes the developmental physicochemical properties of silk fibroin scaffolds derived from high-concentration aqueous silk fibroin solutions. The silk fibroin scaffolds were prepared with different initial concentrations (8, 10, 12 and 16%, in wt.%) and obtained by combining the salt-leaching and freeze-drying methodologies. The results indicated that the antiparallel β-pleated sh...
متن کاملThe effects of different sterilization methods on silk fibroin
The aim of this study was to investigate the changes in the molecular structure and physiological activities of silk fibroin induced by three different sterilization methods (steam, gamma radiation and ethylene oxide) with different dose or time period of sterilization by means of Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction, mechanical properties and assessment of molecul...
متن کاملEnzymatic Degradation Properties of Silk Fibroin Film
The degradation behavior of silk fibroin biomaterials in human body is definitely vital for the growth of tissues. Therefore, an investigation to regulate the degradation behaviors of silk fibroin films by changing the degree of cross-linking is presented in this paper. The in-vitro experiments in the simulated human body environment showed that the degradation rate of cross-linked silk fibroin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Macromolecular bioscience
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2016